The transformation f(2x) represents a horizontal compression of the original function f(x) by a factor of 1/2. This means that the graph of f(2x) is squeezed towards the y-axis compared to the graph of f(x).
Here's a breakdown:
Compression Factor: The factor inside the function argument (in this case, 2) dictates the compression. A value greater than 1 results in a horizontal compression. The x-values are essentially "halved". For example, if f(x) has a point at (4, y), then f(2x) will have a point at (2, y).
How it works: To sketch f(2x), take each x-coordinate on the graph of f(x) and multiply it by 1/2. The y-coordinates remain unchanged.
Visual Example: Imagine f(x) is a wave. f(2x) will be the same wave, but with twice the frequency, compressed horizontally.
Important Note: This is a horizontal transformation, so only the x-values are affected. The y-values remain the same.
Related Concepts: Understanding horizontal%20transformations in general, including both compressions and stretches, is crucial. You should also be familiar with function%20transformations overall. Also, explore graphical%20transformations for visual understanding. Understanding scaling is also important in this subject.
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page